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Disruptions Rapidly Release Plasma Thermal & Magnetic

Energy, Form Relativistic “Runaway” Electron Beams

1. Thermal Quench (TQ)

2. Current Quench (CQ)
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Each phase of disruption presents a threat to ftokamak
vessel components

[ Thermal |
[ Current I
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TQ: Heat flux > Excessive erosion

CQ: Eddy,halo currents
£Z > Mechanical loads

RE: Intense localized
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Relativistic Electron Current
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Rapid shutdown by Disruption Mitigation System (DMS)

is ITER’s last defense against disruption damage
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Goals of ITER DMS

1. Radiate plasma thermal energy isoiropically to PFC
1. 0-D->3-D

2. Minimize CQ mechanical loads

3. Suppress or benignly dissipate RE



Goals of ITER DMS

1. Radiate plasma thermal energy isotropically to PFC
1. 3-D
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3. benignly dissipate RE
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Radiation peaking during disruption mitigation could

cause first wall melting

- Radiation asymmetries could cause local wall melting
even if 100% plasma energy radiated away,
— Toroidal/Poloidal Peaking Factor (TPF/PPF) = Max/Mean
— Melting limits: TPF ~ 2, PPF ~4 (assuming 3ms TQ)

Toroidal Poloidal
Asymmetry Asymmetry
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DIlI-D experimental setup for radiation
asymmetry measurements

IR Periscope
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Single Injector Radiation Asymmetry: No preferential

heating of the injector port location observed on DIII-D

* [ITER concern: Exiremely concentrated
P..q during pre-TQ may cause
localized melting of injector port
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Single Injector Radiation Asymmetry: No preferential

heating of the injector port location observed on DIII-D

* [ITER concern: Exiremely concentrated
P..q during pre-TQ may cause
localized melting of injector port

« DIII-D: Thermal imaging indicates MG
remains cooler than nearby wall

MGI2
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DIll-D measured dependence of P, 4 toroidal asymmetry

upon MGI spatial distribution

1

P..q asymmetry vs At
between 2 MGl valves
measured for pre-TQ, TQ, &
CQ

P,..q integrated over each
time phase to give W, 4
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Multiple Injector Radiation Toroidal Asymmetry: Low W,

asymmeiry & little variation observed for dual vs single MGI

P.oq TOroidal Asymmetry

- TQ & CQ exhibit low O5F lvs
toroidal asymmetr _ : Steady Pre-TQ TPF
Y Y b Pre-TQ = offsel” explainable by {14
— TPF=Wiox/Wiean MGI/boIo geometry
— ITER limit: TPF ~ 2 ® I (90 preferred) 11.3

* No significant
variation with valve
delay
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Multiple Injector Radiation Toroidal Asymmetry:

Comparison to CMOD data yields mixed results

) C-MOD & DI"-D qgree thqi r C_MOD | Olynyk NF53(2013)\
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Multiple Injector Radiation Toroidal Asymmetry:
Comparison to CMOD data yields mixed resulis

NIMROD seems to explain results
very well...
See 1zzo’s talk next
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DIlI-D exploring effect of MHD upon P,,, asymmetry
during TQ

 NIMROD: 1/1 mode during TQ will
cause P, asymmetry even if MGl is
isotropic [1zzo 2012 |IAEA]

1 Particles

« DIII-D Test: If MHD causes P,
asymmetry, can P, 4 phase be
altered by locking 1/1 mode at
varying phases?

— Vary n=1 phase ?20° each shot
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MHD Influence on Toroidal Rad Asym: Phase of TQ P,

asymmetry modified by applied n=1 error field
Wiog Asymmeiry

- TQ: Systematic variation with " Pre-TQQ
qpplied n=‘| ﬁeld 0.4+ QQ ...........................................
— n=1 character 0.3F + ................. é ......
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=
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MHD Influence on Toroidal Rad Asym: Initial mode

phase determined by injection location
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MHD Influence on Toroidal Rad Asym: Mode rotates

from initial phase due to pre-MGI plasma rotation
MGl triggered
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* Plasma rotation before MGl influences pre-TQ mode rotation
— Pre-TQ rotation << pre-MGl rotation

*  Most end near ~250°, due to initial phase plus typical rotation
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MHD Influence on Toroidal Rad Asym: Error field

competes with rotation in determining mode phase

360 " ] 360

using I-coils
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MHD Influence on Toroidal Rad Asym: Error field

competes with rotation in determining mode

360 " ] 360

using I-coils
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Radiation Asymmeiry: To Do List

1. Verify relationship between toroidal asymmetry and n=1
mode (planned end of July)
— Avoid “blind spofts”
— Remove rotation
—  Flip helicity (see lzzo talk next)

2. Measure / predict effect of multiple injectors on poloidal
asymmetry (in progress)
— Likely more important than toroidal asymmetry

3. Characterize radiation asymmetry using shattered pellet
injection (SPI)
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2. Runqwax electron dissiacﬂion



Rapid Loss of Relativistic (10's MeV) RE to Wall May

Cause Intense Localized Damage to Vessel Components

Wall damage most
likely at
“final loss”
(RE beam disruption)

-
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Multiple Points of Interest Along the the RE Beam Life Cycle

Assess vertical controllability of RE
beam & improve by positioning

plasma near neutral point prior to
disruption

Optimize rapid dissipation
of uncontrolled RE beam

to minimize beam energy
at final loss

J Assess feasibility of é Develop physics basis

completely suppressing or for onset, power transfer,
“stunting” RE avalanche & footprint of final loss

-
D”’ D NW Eidietis/PPPL Disruption Workshop/July 2013

SSSSSSSS




Multiple Points of Interest Along the the RE Beam Life Cycle

Today

Optimize rapid dissipation
of RE beam

to minimize beam energy
at final loss

-
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Motivation: Understand dissipation of RE magnetic and kinetic

energy after injection of high-Z gas

* High-Z ions cause rapid dissipation of RE energy

* May be useful way to reduce RE beam energy before wall strike in
ITER.

* Current dissipation rate faster than expected from avalanche
theory (Putvinski, NF, 1994).

Measured and predicted RE plateau decay rate
in middle of plateau with ~10% Ar content
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Motivation: Understand dissipation of RE magnetic and kinetic

energy after injection of high-Z gas

* High-Z ions cause rapid dissipation of RE energy

* May be useful way to reduce RE beam energy before wall strike in
ITER.

* Current dissipation rate faster than expected from avalanche
theory (Putvinski, NF, 1994).

Measured and predicted RE plateau decay rate
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Overview of experiment timing for injecting MGl into RE

plateau

* Start with circular, ECH heated low
density target.

* Shut down at 1200 ms with 15 torr-| Ar
pellet injection, creating RE plateau.

* Request plasma control system to
hold RE plateau centered with 300
kA current.

* Equilibrium reached (steady HXR) at
about 1350 ms.

* Fire MGl into RE plateau at 1450 ms.

* Run out of V-s and lose plasma to
wall around 1600 ms.
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Previous reconstruction of RE f(E)

Hollmann NF 53, 083004 (2013)

1014 T
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* Previously, attempted to ol —
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. i er
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* Assumed constant pitch angle 6.

S
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synchrotron spot aspect ratio. 0
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* Found f(E) more skewed to low 2zt HRII AR RS
. 7 ) . . )
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RE energy spectrum in
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Recent improvements to reconstruction of RE f(E)

Normalized sensitivity vs energy
for different diagnosfics
Attempt to reconstruct fg which best  (assuming Ar bremsstrahlung)

fits multiple diagnostics: "o ‘

- SXR, MXR, HXR, visible synchrofron gl

- New: add consfraint to match |,
and P, (line radiation).

S
o

| SXR

- New: allow pitch angle to vary withs 04|
energy (assume a single 6 at each
energy, no f(0)).

Norma’—ized sensitivity

o
N

- Don’ t use ECE; very hard to fit well. o LA /770 o=
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Electron energy (MeV)

SSSSSSSS



Ar appears to dissipate RE kinetic energy much more

effectively than Ne

* Very rough estimate of W, can be made from diamagnetic loops.
* W,, can also be estimated by integrating fe.

Data indicates drop W,,, after Ar MG, but rise after Ne MGI, despite
larger V4o In Ar MGl case
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Ar appears to dissipate RE kinetic energy much more

effectively than Ne

* Very rough estimate of W, can be made from diamagnetic loops.
* W,, can also be estimated by integrating fe.

Data indicates drop W,,, after Ar MG, but rise after Ne MGI, despite
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Consequence: Ar dissipation may result in much more
benign RE beam by time of final loss compared to neon




RE Plateavu Dissipation: To Do List

ohmic time avalanche time
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Verify RE kinetic energy measurements . .
upper loss e: \I\!' 2 oq
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using various gases for dissipation
e lg o

(planned this summer) _ : _
° ..”M‘ 00 o
0 ool

IR imaging to constrain “knee” in f(E)
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1.

2. Can correct high-Z impurities minimize
magnetic-kinetic energy transfer during Hollmann, NF 53 (2013
final loss (planned this summer) /cgz\

e@oo

3. Can RE be suppressed/stunted by SPI into
early CQ (localized, very high density
deposition at seed Icoation) X
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Conclusions

« Radiation asymmeiry
— Highly localized radiation at injector not significant

— Little variation seen in toroidal radiation asymmetry 1-2 injectors
(will be best explained by NIMROD, next)

— MHD modes seem to play significant role an radiation asymmetry
(as predicted by NIMROD)
3D modeling doing excellent
job of describing this process

- RE dissipation

— f(E) measurements indicate that Argon much more effective than
neon at reducing RE kinetic energy

Understanding and quantitatively
reproducing this result good
opportunity for theory/modeling
progress
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