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Outline

� Final step before full toroidal, resistive MHD control study:
Linear cylindrical tokamak model with finite β for control of
RWM using a combination of normal and tangential magnetic
field measurements

� Comparison of Full Resistive MHD with diffuse profiles
compared with Analytic Reduced MHD in step function profiles,
facilitates understanding of the origin physics results

� Marginal stability values βrp,rw < βrp,iw < βip,rw < βip,iw
(resistive or ideal, plasma or wall) indicate transition points

� Imaginary gain ∼ plasma rotation stabilizes below βrp,iw because
rotation supresses the diffusion of flux from the plasma out
through the wall

� More surprisingly, imaginary gain or rotation destabilizes above
βrp,iw because it prevents the feedback flux from entering the
plasma through the resistive wall.

� Method of using complex gain to optimize in the presence of
rotation for β > βrp,iw .



Full MHD Computation compared with Reduced MHD Analytic
model for Intuition

Model 1: Reduced MHD Model 2: Full MHD
stepfunction profiles

jz0(r) = 2Θ(a1− r) and
p0(r) = p0(0)Θ(a2− r).

smooth profiles
jz0(r) = 2

(1+(r/a1)8)
5/4 from

Furth, Rutherford, Selberg
(Flattened) and

p0(r) = p00
(1+(r/a2)16)9/8

Ideal outer region, Tearing layers
either RI regime (γdτt)5/4−∆1

or VR regime γdτ −∆1

Plasma resistivity, viscosity
constant: S = 105−108,

P = 0.01
a1 < rt � a2 Pressure drive outside rt enhances wall interaction;

(somewhat mimics toroidal external kink)
Resistive wall by thin wall approximation. γτw ψ̃(rw ) = [ψ̃ �]rw
Feedback by control equation. ψ̃(rc) =−G ψ̃(rw )+K ψ̃ �(rw−)

Rotation by Doppler shift. γd ≡ γ + iΩ.



Equilibrium Models are comparable
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Model 1: Reduced MHD Model 2: Full MHD
a1 = 0.5, a2 = 0.8, rw = 1, rc =

1.5, q(0) = 0.9
a1 = 0.55, a2 = 0.7, rw = 1, rc =

1.5, q(0) = 0.8.
q(r) = q(0) for r < a1 and

q(r) = q(0) r2

a2
1

for r > a1 where
q(0) = B0/R and R is the major

radius

Bz(r) from radial force balance
jθ0Bz0− jz0Bθ0 = p�

0(r) by
B2

z0
2 = B2

0
2 +p00−p0(r)−´ r

0 jz0(r �)Bθ0(r �)dr �.
B0 = Bz0(0) specifies q(0)



Model 1: Analysis simplified to a matching problem between
regions

Outer region

∇2
⊥ψ̃ =

mj �z0(r)
rF (r)

ψ̃ +
2m2B2

θ0(r)p
�
0(r)

B2
0 r3F (r)2

ψ̃

=−Aδ (r −a1)ψ̃ −Bδ (r −a2)ψ̃
Solution can be expressed by a basis set

ψ̃(r) = α1ψ1(r)+α2ψ2(r)+α3ψ3(r)

With matching conditions at

γdτtψ̃(rt) =
�
ψ̃ ��

rt
Tearing layer

γτw ψ̃(rw ) =
�
ψ̃ ��

rw
Resistive wall

ψ̃(rc) =−G ψ̃(rw )+K ψ̃ �(rw−) Feedback



Model 1: Basis functions allow for analytic solution construction

rc

!

 

 
 

rw
r

rta
!

a
"

! t
2

w

! "

#

� Basis function method (from early Culham years?) of separating
the solution into zones with superimposed solutions shielded
from neighboring resonant surfaces or conducting walls.

� Further separating the solution into the plasma response (ψ1) and
the resistive wall / control coil external solution ( ψ2) simplifies
the analysis into a 2x2 matrix structure for coefficients of ψ1 and
ψ2. (ψ3, the control flux then determined)



Model 1 : Simple 2x2 Matrix Structure offers Intuitive
Understanding

For VR regime

�
∆1− γdτt l21

l12−Kl32l12 ∆2− γτw −Gl32+Kl32l
(−)
22

��
α1
α2

�
= 0

VR: τt ∼ S2/3 for Pr = 1.
∆1 = 0 is at βrp,iw
∆2 = 0 is at βip,rw .
Equivalence of wall rotation and Gi (Finn-Chacon 2004)

For RI regime τt ∼ S3/5 and γdτt → (γdτt)5/4

For VR or RI can in principle stabilize up to βip,iw (∆1 =∆2 = ∞)
using both G and K .



Model 2: Full MHD model includes finite β , compressibility,
parallel dynamics, resistivity, viscosity

γ~v =
�

∇×~B
�
×B0+ j0× B̃−∇p̃+ν∇2~v

γ~B = ∇×
�
~v×B0−η∇×~B

�

γ p̃ =−ṽ ·∇p0−Γp0∇ · ṽ

Finite difference discretization (with variable grid density) leads to
the standard matrix form:

γ




ṽ
B̃
p̃



= M ·




ṽ
B̃
p̃







Model 2: Boundary Conditions in Full MHD: Resistive Wall and
Control

Boundary conditions at resistive wall include effect of control coil and
complex gain, equivalent to reduced model

γd B̃r (rw ) = ik ·B0ṽr

imṽr/r + r∂r (ṽθ/r) = 0

ikṽr +∂r ṽz = 0

∂r (r B̃θ )− imB̃r = 0

γd p̃ =−ṽr∂rp0(rw )−Γp0(rw )(∇ · v)rw

γτw B̃r = [B̃ �
r ]rw

B̃r (rc) = [−(Grw −K )B̃r (rw )+Krw B̃r
�
(rw−)]/rc



Results: γ vs. β showing βrp,rw < βrp,iw < βip,rw � βip,iw ; analytic
and numerical
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� Growth rate γ for the analytic model (a), with
βrp,rw = 0.045, βrp,iw = 0.101, βip,rw = 0.383, βip,iw = 0.440.
At βrp,iw , ∆1 equals zero and at βip,rw , ∆2 equals zero.

� Numerical results in (b), showing βrp,rw = 0.04 βrp,iw = 0.11,
and βip,rw � βip,iw .

� Large ideal limits are due to diffuse profiles (computaitonally
advantageous), while the focus is on the lower limits βrp,rw and
βrp,iw .



In toroidal (DIII-D) configurations the upper limits at far lower
β , limits in same order

Resistive / ideal plasma
limits with / without a
(perfectly) conducting
wall indicates (without
rotation or control) four
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PEST-III resistive plasma β limits

q
min

=1.08, flat top

wall conformal at r
w

=1.1a

no wall wall at r
w

=1.1a

δW=0 ideal plasma

a) b)

S=τR/τA=108 non-viscous

Next steps: resistive wall and control in toroidal. For now: cylindrical.



G-K Maps with Ω = Gi = Ki = 0 Show similar structure between
reduced and full MHD models

(a)

Reduced MHD
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(b)

S=1x106
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(c)

S=1x105

� (a) Analytic model with β0 = 0.025, 0.075, 0.15, and 0.225. The
left boundary is vertical at β0 = 0.101 = βrp,iw .

� (b) Full MHD with S = 106 with β0 = 0.07,0.09, 0.11 = βrp,iw ,
and β0 = 0.13, and the left boundary is indeed vertical at βrp,iw .

� (c) Full MHD with S = 105 with the same β0 values as (b) and
the left boundary is also vertical as βrp,iw = 0.12 is crossed.

� Qualtivative structure of the maps is captured by reduced MHD
(a). Both results have vertical line at βrp,iw . Effects of Ω, Ki and
Gi change above βrp,iw ,where Ω becomes destabilizing.



Results qualitatively similar between Analytic and Full MHD
models for β < βrp,iw : Increasing Ω Stabilizing

(a) (b)

� (a) Analytic with β0 = 0.068 < βrp,iw = 0.101.
� (b) Full MHD with β0 = 0.09 < βrp,iw = 0.12.
� The results show that increasing Ω increases the stable area for

β0 < βrp,iw except for small Ω.



Results: β > βrp,iw where Ω is Destabilizing; analytic and
numerical

(a) (b)

� S = 105, Gi = Ki = 0 and varying rotation Ω.
� (a) simplified model with β0 = 0.12 (b) full MHD model with

β0 = 0.13.
� The plasma Doppler shift frequencies in (a) and (b) are

Ω= 0, 0.001, 0.003, 0.005.
� These results show that for β0 > βrp,iw the stable region shrinks

as |Ω| increases.



Given a particular Ω, Gi can optimally counter and have the
largest stable window equivalent to Ω=0; analytic and numerical
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� In (a) we have reduced MHD same as above except for the wall
time, which is made equal to the numerical case, τw = 2×104,
and Gi = 15,30,45,60.

� In (b) we have full MHD with parameters same as above, with
Gi = 0, 20, 40, 80.

� There is an optimal value of Gi ; for this value the effective wall
rotation rate Ωw is equal to Ω and the stable region is
maximized. Gi equivalent to Ωw .



Analytic Results: With Ω= 0, finite Ki is destabilizing for
β < βrp,iw and β > βrp,iw

(a) (b)

� Stability diagrams for the reduced MHD model only
� (a) β0 = 0.068 < βrp,iw with Ki = 0, ±2, ±4
� (b) β0 = 0.15 > βrp,iw with Ki = 0, ±1, ±2.
� In both regimes of β0, Ki decreases the size of the stable region.



With Gi = 0, Ω= 0.005, Ki is destabilizing for β < βrp,iw ; analytic
and numerical

(a) (b)

� (a) Reduced MHD model with β0 = 0.068
� (b) the full MHD model with β0 = 0.09.
� Optimal value of |Ki | is small and larger values destabilize in the

β0 < βrp,iw regime.



With Gi = 0, Ω= 0.005, Ki has an optimal value for β > βrp,iw ;
analytic and numerical

(a) (b)

� (a) Reduced MHD model with β0 = 0.15
� (b) Full MHD model with β0 = 0.13
� In (a) the optimal value of Ki is -1. In (b) the stability regions are

more complex, but optimal for |Ki | small.



Summary

� Feedback with complex gain G multiplying normal component
of B̃ and complex gain K multiplying tangential component. Gi
and Ki represent simple phase shift of coils.

� Full resistive MHD model agrees with reduced resistive MHD
model using stepfunction profiles

� For β < βrp,iw rotation Ω and Gi ∼ Ω stabilize, as expected. Ki
stabilizes in different way

� For β > βrp,iw rotation Ω and Gi destabilize. Ki destabilizes too
� In β > βrp,iw regime with Ω: can optimize the feedback stable

region by applying Gi such that Ωw =Ω. There is an optimal Ki
too, but no obvious equivalence


